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Abstract: The Advanced Spaceborne Thermal-Emission and Reflection Radiometer Global Digital
Elevation Model (ASTER GDEM) is important to a wide range of geographical and environmental
studies. Its accuracy, to some extent associated with land-use types reflecting topography, vegetation
coverage, and human activities, impacts the results and conclusions of these studies. In order to
improve the accuracy of ASTER GDEM prior to its application, we investigated ASTER GDEM errors
based on individual land-use types and proposed two linear regression calibration methods, one
considering only land use-specific errors and the other considering the impact of both land-use and
topography. Our calibration methods were tested on the coastal prefectural city of Lianyungang in
eastern China. Results indicate that (1) ASTER GDEM is highly accurate for rice, wheat, grass and
mining lands but less accurate for scenic, garden, wood and bare lands; (2) despite improvements in
ASTER GDEM2 accuracy, multiple linear regression calibration requires more data (topography) and
a relatively complex calibration process; (3) simple linear regression calibration proves a practicable
and simplified means to systematically investigate and improve the impact of land-use on ASTER
GDEM accuracy. Our method is applicable to areas with detailed land-use data based on highly
accurate field-based point-elevation measurements.

Keywords: ASTER GDEM; DEM; error assessment; land use; linear regression analysis

1. Introduction

Digital elevation models (DEMs) are often used as important data in a wide range of geographical
and environmental research [1–6] and can be acquired by various methods including spatial
interpolation based on ground control points (GCPs) [7,8], airborne or spaceborne LiDAR [9,10]
and terrestrial laser scanning [11,12]. Due to topographic, political, climatic, financial and/or
technical obstacles [13,14], such methods are however not suitable for producing DEMs of large
areas—for example Chinese cities or counties—that cover areas of thousands of square kilometers.

Spaceborne platforms like Terra Advanced Spaceborne Thermal-Emission and Reflection
Radiometer (ASTER), however, can solve that problem by providing free DEM datasets that cover
large areas for most of the globe. Compared to the early version, the 30-m resolution ASTER Global
DEM (ASTER GDEM) dataset released in 2011 (hereafter GDEM2) has significantly improved spatial
coverage, horizontal resolution, and accuracy. Yet data anomalies remain in the GDEM2, which can
produce noticeable elevation errors on a local scale [15]. Many studies have successfully explored
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both vertical [16–19] and relative height accuracy, since absolute vertical accuracy complements Earth
superficial shape (ESS) descriptions [20].

ASTER GDEM accuracy is reported to be controlled by topographic features [20–24]. For example,
different slope classes reveal contrasting GDEM errors [20]. ASTER GDEM is less accurate for rough
and forest areas than for flat and bare land [25]. Previous studies have revealed that land cover is
also an important impacting factor [17,24,26]. However, these examinations were mostly limited to
vegetated and built-up land [27,28].

Land-cover information is generally derived from the classification of moderate-resolution
remote-sensing images [29] (for example, 30 m Landsat TM/ETM+). As such, remotely sensed
land-cover data is often less accurate than land-use data; the latter is mainly used for regional public
administration such as cadastral management, regional planning and taxation, and is generally
obtained through field surveys or sub-meter aerial photography [30,31]. Additionally, land-use
data describes how land is used and can reflect topographic and vegetative features. Generally,
higher elevations with more complicated topographical features correspond to lower labor- or
capital-intensive land-use categories such as wood and reserve land. In flat areas, construction
or arable land is more prominent than lower labor- or capital-intensive land-use types [32–34]. This
suggests that land-use data is more suitable for calibrating DEM than land-cover data. So far, however,
land-use data has been little used for improving ASTER GDEM accuracy.

This study aims at calibrating ASTER GDEM2 via land-use data. We examined two linear
regression calibration methods: the first is based on simple linear regression models, which consider
only the impact of land-use on GDEM errors; the second is based on a multiple linear regression model
and considers the impacts of both land-use and topography. Both methods were tested on the eastern
coastal Chinese city of Lianyungang and the results compared. The detailed objectives of this study
are to investigate the relationship between GDEM2 errors and a wide range of land-use types in order
to propose a practicable land use-specific calibration method for improving the accuracy of GDEM2 in
studying geographical areas for which high-resolution DEM datasets are lacking.

2. Data and Methods

2.1. Study Area

Lianyungang is located on the Chinese coast in the north-east Jiangsu Province (118.4◦–119.8◦

E, 34.0◦–35.1◦ N) and has a temperate monsoon climate [35]. The study area comprises the three
districts of the urban area of Lianyungang: Xinpu, Haizhou and Lianyun (Figure 1A). The study area
has a population of over one million and an area of ~633 km2 and includes various land-use types
(Figure 1B).

Since sea-level elevations at the immediate coast were labelled as 0 in GDEM2 [36], we excluded
these areas from the study (that is, the coastal areas with 0 value in GDEM2), regardless of land-use
types, to avoid unexpected errors in further analysis.
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Figure 1. Study area consisting of Xinpu, Haizhou and Lianyun districts of Lianyungang: (A) GDEM2
at 30 m resolution; (B) land-use map for 2005, provided by Land and Resources Bureau of Lianyungang.
Dark purple indicates the coastal areas with 0 value in GDEM2.

2.2. Advanced Spaceborne Thermal-Emission and Reflection Radiometer Digital Elevation Model (ASTER
DEM) and Land-Use Datasets

The 30 m ASTER GDEM2 dataset for the study area was downloaded from the International
Scientific and Technical Data mirror site, Computer Network Information Center, Chinese Academy of
Sciences (http://www.gscloud.cn). It was provided in GeoTIFF format, with the Universal Transverse
Mercator (UTM) Zone 50N Projection and the World Geodetic System (WGS) 1984 as the horizontal
datum, and the Earth Gravitational Model 1996 (EGM96) as the vertical datum.

Although the ASTER GDEM2 was released in 2011, the Terra satellite was launched in 1999.
The exact acquisition time of the tiles producing ASTER GDEM is unknown, limiting the selection of
land-use data. However, a cadastral survey was conducted in 2005 to build a cadastral geodatabase
integrating urban and rural areas and to map land-use at a 1:2000 scale for the study area. The 2005
land-use data obtained for the study area is midway between the satellite’s 1999 launch and the data
release in 2011, so that we can expect reasonable correspondence between the ASTER GDEM data and
land-use data. The geodatabase includes 24 land-use types, which are not detailed here due to limited
space. These were reclassified into 11 types according to China’s Current Land-Use Classification
(GB/T21010-2007) [37] (Figure 1B): mining (mostly salterns in the south-eastern town of Xuwei in
Lianyun District; salterns are considered mining land in China), urban, rural, scenic, wood, bare, grass,
wheat, rice, water (mostly inland) and tide, and garden lands (see Table A1 for description of these
land-use types). The reclassified land-use types were then used to improve the GDEM2. The land-use
data was re-projected from GCS_Xian_1980 to the Universal Transverse Mercator (UTM) zone 50N,
in correspondence with the GDEM2.

2.3. Reference Data

Elevations measured using the Global Navigation Satellite System (GNSS) were used as
ground-truth data. GNSS measurements are taken at the decimeter–centimeter level [38] and have an
RMSE (root mean square error) of 30 mm, which is lower than that of GDEM2 [39]. The GNSS-based
point measurements (over 30,000 points evenly distributed across the study area) with the 1985 National
Height Datum in China in the local cadastral survey geodatabase were converted into orthometric
height with the Earth Gravitational Model 1996 (EGM96) by subtracting the height of the geoid.

Two different independent sets of sample points were randomly selected from the GNSS
measurements of the study area: the first sample set (calibration data) was used for calibration
by comparing it with the original GDEM2 while the second sample set (validation data) was used for
assessing the performance of the method by comparing it with the calibrated GDEM2. A stratified

http://www.gscloud.cn
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sampling procedure was performed using an ArcGIS add-in, known as the Sampling Design Tool
and allowing various sampling methods [40]: we randomly selected 100 points—minimum distance
of 100 m between any pair of two points—for each reclassified land-use types except for grass land
(74 points because it was relatively scarce). This resulted in each of the two sets consisting of 1074 points.

2.4. Methods

2.4.1. Statistical Measures

We first compared the original GDEM2 and the calibration data by subtraction for each of the 11
land-use classes, in order to investigate how elevations in the two datasets varied with land-use type.
The (maximum and minimum) elevation difference between the original GDEM2 and the calibration
data (Dorig), the mean error (ME), absolute mean error (AME), standard deviation error (STD), and root
mean square error (RMSE) were used to characterize the vertical deviation of the original GDEM2
from the calibration data.

The statistical ME measurement reveals the tendency of GDEM2 errors. AME can avoid the offset
of negative and positive values, and thus gives a better estimate of the error through absolutizing
errors; it is a good indicator that reflects the average of the absolute errors. The statistical STD is the
Dorig deviation from ME, and RMSE is the Dorig deviation from ground-truth values. Lower STD and
RMSE mean a more concentrated distribution of Dorig. These statistical measures have been widely
used for assessing the vertical accuracy of DEM [26,41–43]. They were acquired using the following
equations:

ME =
n

∑
i=1

Dorigi
n

(1)

AME =
n

∑
i=1

|Dorigi|
n

(2)

STD =

√
1

n− 1

n

∑
i=1

(Dorigi −ME)2 (3)

RMSE =

√
∑n

i=1 (Dorigi)
2

n
(4)

where n is the number of sample points (e.g., 1074 for the study area as a whole), i the ith sample point,
ME the average value of difference Dorigi, STD the standard deviation error of Dorigi, and RMSE
the root mean square error of Dorigi. In all equations, Dorigi is the difference between the original
GDEM2 value ZGDEM2_i and the ground-truth elevation Zelev_i (represented here by GNSS elevations).
Higher absolute values of Dorig indicate larger errors in the original GDEM2 elevations in relation to
the GNSS elevations.

To explore the relative height accuracy of GDEM2, the false slope ratio (FSR) was used, which can
be calculated by [20]:

FSR =
B

A + B
× 100 (5)

where A and B are the total number of observed cases in which DEMs and GCPs report the same slope
trend or different slope trends, respectively. Values of FSR range from 0 to 100. Lower values indicate
higher relative height accuracies.

2.4.2. Calibration Methods

Linear regression analysis was used to calibrate the ASTER GDEM. Linear regression analysis
is a simple and effective technique to build quantitative relationships between variables in a wide
range of fields including geographical studies [44–46]. It is noted that linear regression does not
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necessarily imply causation but indicates an association between variables. We performed simple
linear regression to model the relationship between GDEM2 error and land-use types. For comparison,
we conducted multiple linear regression to model the relationships between GDEM2 error, land-use
types, and topographic factors. GDEM2 elevation value, slope, and aspect were included in the
multiple linear regression model after they were extracted from the GDEM2 and GNSS datasets
using ArcGIS.

In the multiple linear regression, land-use types and aspect were considered categorical variables,
following the method proposed by Li et al. [47]. Aspect was divided into nine different direction
categories, each having a range of 45◦. In other words, the N category ranged from 337.5◦ to 22.5◦,
the NE category ranged from 22.5◦ to 67.5◦ and so on. With the N category being the reference,
the remaining eight direction categories were included as dummy variables (i.e., NE, E, SE, S, SW, W,
NW, and Flat) in the process of modelling. This means that a sample point can be described with the
eight dummy variables. For example, a sample point with an SE aspect can be described as SE = 1
with other seven dummy variables being 0, and a sample point with an S aspect can be described as
S = 1 with the other seven dummy variables being 0. If all the eight dummy variables are 0, the sample
point has an N aspect. Similarly, with mining land as the reference, the remaining 10 land-use types
were also integrated as dummy variables.

As mentioned in the introduction, DEM elevation errors are controlled by land-use and topographic
factors (here, slope and aspect). Thus, we can construct a model as Dorig = f (Land use, Slope, Aspect),
which can be transformed into Zelev = ZGDEM2 + f (Land use, Slope, Aspect).

Multiple linear regression models the relationship between two or more independent variables
and a dependent variable by fitting a linear equation to the observed data, and is expressed as:

Y = β0 +
N

∑
i=1

βiXi + ε. (6)

The model was constructed through stepwise regression, with the GDEM2 elevation, GDEM2
slope, 10 dummy variables for 11 land-use types, and 8 dummy variables for 9 aspect categories, being
used as candidates for independent variables and GNSS elevation as dependent variable. Stepwise
regression remains prevalent in research due to its effectiveness in identifying the optimal variables
among many for constructing a good predictive model [47,48].

Prior to modelling, correlation analysis was performed to examine the relationships between these
variables, which would provide a basis for the modeling. As stepwise regression can exclude highly
correlated independent variables in the resultant multiple linear regression model, the correlation analysis
focused on the relationship between the dependent variable and the independent variables [47,48].

Both the simple and multiple linear regression analyses were used to calibrate the ASTER GDEM
dataset for the study area. The two calibrated ASTER GDEM datasets were then compared to assess
the performances of the calibration methods using the above-mentioned statistical measures.

3. Results

3.1. Characterizing GDEM2 Errors

The elevation difference (Dorig) between the original GDEM2 and the calibration data (using the
first set of 1074 sample points randomly selected from the GNSS elevation measurements) and its
statistical measures were calculated to explore the relationship between errors in ASTER GDEM and
individual land-use types. It is obvious that remarkable elevation discrepancies were observed for
wood, bare, scenic and garden lands (Figure 2).
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Figure 2. Land-use specific elevation differences (Dorig) between the original ASTER GDEM and the
calibration data (the first sample set).

Table 1 and Figure 3 present the distribution of elevation difference Dorig for each land-use type.
The range of Dorig was small for mining, rice, water and tide, urban, and wheat lands but wide for bare,
garden, scenic and wood lands (Table 1). Boxplots display the dispersity of Dorig for each land-use
type with statistical measurements including the maximum, minimum, median, upper, and lower
quartile values (Figure 3). As seen in Figure 3, the ranges from lower to upper quartile values for bare,
scenic, wood and garden lands are larger than for other land-use types. Additionally, the maximum
and minimum values for these four land-use types are greater than for others.

The statistical measures of elevation difference Dorig for each land-use type are given in Table 2.
The ME values were negative for rural and garden lands and positive for other land-use types, revealing
a land use-specific bias of the GDEM2 data for our study area. Bare, wood, garden and scenic lands
were characterized by the highest AME, STD and RMSE values, which indicates these had the lowest
vertical accuracy among all land-use types. The FSR depicting relative height accuracy shows different
features of the study area (Table 2). The FSR values were no more than 10.00% for bare, wood, garden
and scenic lands, in contrast to those for water and tide, urban, rural, rice, wheat and grass lands.

Table 1. Frequency distribution of Dorig (the difference between the original GDEM2 and the first
sample set).

Frequency (%) Land-Use Type

Range of
Dorig/m

Bare
Land

Garden
Land

Grass
Land

Mining
Land

Rice
Land

Rural
Land

Scenic
Land

Urban
Land

Water &
Tide Land

Wheat
Land

Wood
Land

−180–−140 1.00 1.00
−140–−100 5.00 2.00
−100–−60 17.00 4.00 1.35 9.00 13.00
−60–−20 14.00 17.00 1.35 1.00 1.00 5.00 23.00 5.00 4.00 20.00
−20–20 20.00 63.00 93.24 94.00 96.00 89.00 49.00 94.00 96.00 99.00 22.00
20–60 20.00 15.00 4.05 5.00 3.00 6.00 16.00 1.00 1.00 31.00
60–100 15.00 1.00 3.00 10.00

100–140 6.00 1.00
140–180 1.00

>180 1.00



www.manaraa.com

ISPRS Int. J. Geo-Inf. 2018, 7, 145 7 of 17

Figure 3. Boxplots illustrating the distribution of Dorig (the difference between the original GDEM2
and the first sample set).

Table 2. Statistical measures of Dorig (the difference between the original GDEM2 and the first sample set).

Land-Use Type Sample
Points

Mean
Error

(ME) (m)

Absolute
Mean Error
(AME) (m)

Max
(m)

Min
(m)

Standard
Deviation

Error (STD)
(m)

Root Mean
Square Error
(RMSE) (m)

False Slope
Ratio (FSR)

(%)

Water and tide land 100 4.47 5.07 22.59 −8.78 4.63 6.42 13.00
Urban land 100 2.12 7.50 23.81 −44.07 10.65 10.80 16.00
Rural land 100 −0.83 7.54 26.17 −45.39 10.40 10.38 11.00

Garden land 100 −1.24 17.42 50.12 −90.30 24.08 23.99 6.00
Scenic land 100 2.38 19.30 74.50 −64.89 25.46 25.44 10.00
Rice land 100 6.03 6.28 20.87 −5.51 4.22 7.35 13.00

Mining land 100 0.45 4.02 41.73 −110.94 12.84 12.78 8.00
Bare land 100 9.34 49.53 225.33 −131.42 64.32 64.67 3.00

Wheat land 100 3.05 5.64 15.58 −21.96 6.39 7.05 13.00
Wood land 100 3.01 40.76 203.31 −117.34 55.43 55.23 9.00
Grass land 74 3.51 8.38 43.29 −43.08 12.14 10.80 13.51
Whole area 1074 2.92 15.76 225.33 −131.42 28.98 29.10 10.43

3.2. Simple Linear Regression Analysis Using Only Land-Use Data

Simple linear regression analysis was used to investigate the relationship between the original
GDEM2 and the calibration data for different land-use types, as shown in Figure 4. The correlation
coefficient was as high as 0.950 for the study area as a whole, but varied with land-use type, being
higher for mining, scenic, wood and garden lands (r > 0.90) but lower for grass, wheat, rice and water
and tide lands (r < 0.5). The lowest correlation coefficient was observed for rice land (r = 0.109). Simple
linear regression models were constructed for the entire study area and for each land-use type. The 11
land use-specific regression models were used to calibrate the GDEM2 and generate an improved
DEM, termed GDEM2sr.
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Figure 4. Scatterplots of the original ASTER GDEM2 against the calibration data (that is, the first
sample set). Land-use specific simple linear regression models (where the asterisk symbol indicates
multiplication) and correlation coefficients are shown in each scatterplot.
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3.3. Multiple Linear Regression Analysis Using Land-Use and Topographical Data

Prior to modelling, we performed a correlation analysis for ground-truth elevation value Zelev
and the independent variables, including GDEM2 elevation value ZGDEM2, GDEM2 slope, and the
dummy variables for land-use and aspect. Table 3 shows a significant correlation between Zelev and
the independent factors.

Table 3. The correlation coefficient values (represented by r) and the associated p-values (represented
by p) between the elevation value ZElev and the independent variables.

Zelev Zelev Zelev Zelev

South-west r 0.081 Bare Land r 0.390 Scenic Land r 0.171
p 0.008 p 0.000 p 0.000

ZGDEM2 r 0.751 North-east r 0.021 Garden Land r 0.199 Urban Land r −0.107
p 0.000 p 0.484 p 0.000 p 0.000

Slope of GDEM2 r 0.675 North-west r −0.014 Grass Land r −0.092 Water & Tide Land r −0.208
p 0.000 p 0.657 p 0.002 p 0.000

North r −0.023 Flat r −0.164 Mining Land r −0.349 Wheat Land r −0.167
p 0.454 p 0.000 p 0.000 p 0.000

South r 0.067 East r −0.013 Rice Land r −0.222 Wood Land r 0.423
p 0.028 p 0.679 p 0.000 p 0.000

South-east r −0.023 West r −0.032 Rural Land r −0.049
p 0.445 p 0.289 p 0.110

Using the analysis results shown above, a multiple linear regression model of Zelev was constructed
through stepwise regression with the variables listed in Table 3. ZGDEM2, the south-west aspect, slope,
west aspect, north-east aspect, woodland and garden land entered the model as their regression
coefficients were significant based on their t-statistics with associated p-values (Table 4). We calibrated
the GDEM2 using the resultant multiple linear regression model to produce a second improved DEM,
GDEM2mr.

Table 4. The multiple linear regression model of Zelev.

Regression Coefficients T-Test p-Values

Constant −6.356 −5.042 0.000
ZGDEM2 0.884 67.534 0.000

Southwest Aspect 19.45 7.999 0.000
Slope of GDEM2 0.687 5.448 0.000

West Aspect 11.969 4.541 0.000
Northeast Aspect −10.711 −4.204 0.000

Wood land 8.97 2.647 0.008
Garden land 7.23 2.53 0.012

3.4. Assessment of Improved GDEM2s

After calibrations, the elevation difference (Dcal) between the calibrated GDEM2s (both GDEM2sl
and GDEM2ml) and the validation data (that is, the second sample set), and their statistical measures
for the two results, were computed and used to assess the two methods (Table 5 and Figure 5).
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Table 5. Statistical measures of the elevation differences between the calibrated GDEM2 and the
validation data. S indicates simple linear regression and M multiple linear regression.

Land-Use Type Sample
Points

ME (m) AME (m) Max (m) Min (m) STD (m) RMSE (m) FSR (%)

S M S M S M S M S M S M S M

Water & tide
land 100 −1.39 2.05 3.14 8.67 17.02 29.97 −50.63 −37.24 7.54 11.52 7.63 11.65 14.00 9.00

Urban land 100 0.42 0.22 5.08 7.95 10.87 26.74 −20.93 −26.37 6.82 10.39 6.80 10.34 10.00 10.00
Rural land 100 1.05 −2.89 8.09 8.84 28.16 34.43 −41.32 −46.87 10.68 12.23 10.68 12.51 10.00 12.00

Garden land 100 −0.49 −0.90 13.71 14.14 57.38 51.71 −47.88 −45.84 18.34 18.32 18.26 18.25 3.00 4.00
Scenic land 100 −7.99 −6.79 24.06 21.87 70.09 73.13 −94.23 −91.05 30.83 28.68 31.70 29.33 6.00 9.00

Riceland 100 −0.05 2.00 1.02 7.03 6.74 25.81 −21.27 −18.35 2.61 9.53 2.60 9.69 17.00 8.00
Mining land 100 0.22 −3.42 2.74 8.42 23.98 35.69 −45.15 −50.96 6.70 10.30 6.67 10.81 9.00 14.00

Bare land 100 4.53 3.93 47.53 42.62 181.05 175.95 −141.74 −129.36 62.13 56.87 61.99 56.72 2.00 4.00
Wheat land 100 0.95 0.53 3.48 7.36 17.97 30.65 −20.42 −31.75 5.16 9.80 5.22 9.77 6.00 12.00
Wood land 100 −9.11 −10.20 36.20 33.85 88.56 80.01 −120.01 −109.34 43.72 40.55 44.45 41.62 5.00 4.00
Grass land 74 1.85 0.17 5.41 9.48 33.35 41.45 −23.63 −47.71 7.22 13.38 6.37 11.43 2.70 6.76
Whole area 1074 −0.98 −1.43 13.88 15.62 181.05 175.95 −141.74 −129.36 26.41 25.46 26.40 25.48 7.82 8.47

Figure 5. Calibrated GDEM2 produced through (A) simple linear regression (GDEM2sl); (B) multiple
linear regression (GDEM2ml), respectively.

4. Discussion

4.1. GDEM2 Errors for Different Land-Use Types

As ASTER GDEM accuracy is influenced by topographical features and land cover, both of which
are reflected by land-use [32–34], we first examined the elevation difference between the original
GDEM2 and the calibration data (that is, the first sample set). The statistical measures of Dorig (Table 2)
for our study area demonstrate that such influence varies with land-use type: negative ME values
for rural and garden lands but positive ones for other land-use types. In addition, bare land has the
greatest and most dispersed GDEM2 errors among all the land-use types. This is likely to be caused
by slope and aspect, which influence GDEM2 error [49], because the bare land in Lianyungang is
characterized by high elevation, complex terrain and no vegetation coverage.

As its values were dominated by 0 due to the GDEM2 error fluctuating highly around 0, ME cannot
well reflect the range of GDEM2 errors. This shortcoming can be rectified by using AME. Comparative
analysis of the AME values for different land-use types shows greatest GDEM2 errors observed in
bare, wood, garden and scenic lands at high elevations, and smallest errors in mining, water and tide,
wheat and rice lands. Similar observations were made for the statistical measures STD and RMSE
values. To explore the source of GDEM2 errors for different land-use types, elevation and slope for
each land-use type were classified (Table 6). It is evident that most mining, water and tide, wheat
and rice lands are flat with low elevations, while bare, wood, garden and scenic lands are undulating
or even steep, with higher elevations in comparison with other land-use types (Table 6). This agrees
with the reported relationships between topographical features and land-use [32–34]. According to
the statistics shown in Tables 2 and 6, greater absolute errors are found in areas of land-use types for
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which more sample points have higher slopes and elevations. This finding demonstrates the strong
influence of high elevation and complex terrain on ASTER GDEM accuracy. The GDEM2 elevations
were more accurate for rice, wheat, grass and mining lands, mainly in flat areas, and less accurate for
scenic, garden, wood and bare lands with complex topographical features, consistent with the finding
of the ASTER GDEM validation team [49].

Table 6. Original GDEM2 elevation and slope classification for each land-use type in the study area.

Land-Use Type Sample
Points

Elevation Classification (m) Slope Classification (◦)

<51 51–145 145–254 254–385 385–614 0–15 15–30 30–45 45–60

Water and tide land 100 100 0 0 0 0 100 0 0 0
Urban land 100 98 2 0 0 0 98 1 1 0
Rural land 100 96 4 0 0 0 94 6 0 0

Garden land 100 58 30 10 2 0 71 27 2 0
Scenic area 100 55 31 12 1 1 59 40 1 0
Rice land 100 100 0 0 0 0 100 0 0 0

Mining land 100 95 5 0 0 0 97 3 0 0
Bare land 100 15 26 35 19 5 37 40 19 4

Wheat land 100 100 0 0 0 0 99 1 0 0
Wood land 100 9 19 33 22 17 34 43 20 3
Grass land 74 98.65 1.35 0 0 0 66 7 1 0
Whole area 1074 74.39 10.99 8.38 4.1 2.14 855 168 44 7

The FSR is a good indicator of DEM’s relative height accuracy, and its combination with other
statistical measures gives a comprehensive assessment of both the absolute and relative height
accuracies on DEM [20]. Table 2 shows that the GDEM2 in flat areas for rice, wheat and grass lands have
smaller absolute errors but also lower relative height accuracy (higher FSR values). Undulated/steep
areas for bare, garden and wood lands have higher relative height accuracy with lower FSR values,
indicating that topography impacts both the absolute and relative height accuracy of GDEM2 errors.

Our findings illustrate the contrasting influence of land-use on the accuracy of ASTER GDEM
(Table 2), and justify the calibration of ASTER GDEM using simple linear regression models that
consider only the impact of land-use on GDEM2 errors.

4.2. Assessment of Improved GDEM2 Data

The high correlation (r = 0.950) between the original GDEM2 and the calibration data (the first
sample set) for the entire study area (Figure 4) justifies the use of the simple linear regression models
to improve the accuracy of GDEM2. For individual land-use types, many of them have correlation
coefficients r > 0.5, except for grass, wheat, rice, and water and tide land. Rice land is generally quite
flat (with suitable slopes of less than 3◦ [50]) and can be assumed to have constant elevations in a given
geographical area (for example, in Lianyungang). Despite a low correlation (r = 0.109), other measures
in Table 2 show low absolute errors observed for rice land. It is therefore reasonable to apply simple
linear regression to calibrate ASTER GDEM elevations for rice land using GNSS measurements. It is
also worth mentioning that the effect of applying the linear regression model for rice land approximates
masking, that is, replacing the elevations with a constant value [49] (for rice land, that value is 5.90),
as the slope of the regression model is almost 0 (the scatterplot for rice land in Figure 4). The calibrated
ASTER GDEM is remarkably improved (see Table 5 and Figure 6A). All the observed statistical
measures in ASTER GDEM elevations decreased, particularly ME (which decreased from 2.92 m to
−0.98 m), suggesting reduced systematic error for the entire study area. The error range was also
considerably reduced, from (−131.42, 225.33) to (−141.74, 181.05). Both STD and RMSE decreased
as well, which indicates that our simple linear regression calibration method can effectively improve
ASTER GDEM accuracy.
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Figure 6. The statistical measures of the elevation errors for the original GDEM2 and calibrated GDEMs
(GDEM2sl and GDEM2ml) for the calibration (A) and the effect of sampling (B).

The multiple linear regression analysis unravels the relationships between GDEM2 error, land-use
types, and topographical factors. Table 3 demonstrates higher relative correlation coefficients between
ground-truth elevation values (ZElev) and the independent variables, including GDEM2 elevation
(ZGDEM2), slope of GDEM2, and some land-use types (bare, mining, and wood lands). The variables
entering the multiple linear regression model gave contrasting significant contributions to the
improvement of GDEM2 accuracy according to our stepwise regression analysis (Table 4). Changes
in the statistical measures as shown in Tables 2 and 5 prove the multiple linear regression calibration
method indeed improved GDEMS accuracy.

Both calibration methods can improve GDEM2 accuracy. However, simple linear regression
calibration, which only considered the impact of land-use, returned lower ME, AME and FSR but
higher STD and RMSE values than the multiple linear regression calibration, which considered the
impacts of both topography and land-use.

4.3. Effects of Sampling

To examine the effect of our sampling on the results, we exchanged the datasets for calibration and
validation; that is, the second sample set was used for calibration and the first sample set for validation.
The statistical measures of the differences between the original GDEM2 and GNSS data based on the
second sample set are shown in Table 7, and the differences between the calibrated GDEM2 and GNSS
data based on the first sample set are shown in Table 8.

Table 7. Statistical measures of the difference between original GDEM2 and GNSS measurements by
using the second sample set for calibration.

Land-Use Type Sample Points ME (m) AME (m) Max (m) Min (m) STD (m) RMSE (m) FSR (%)

Water & tide land 100 4.74 6.64 22.51 −45.20 7.71 9.01 12.00
Urban land 100 2.14 6.07 14.49 −20.67 7.29 7.56 12.00
Rural land 100 1.03 8.11 39.51 −38.96 11.00 11.00 9.00

Garden land 100 −1.07 13.01 57.71 −49.86 18.14 18.08 3.00
Scenic land 100 −5.75 23.71 75.13 −105.00 31.36 31.73 10.00
Rice land 100 6.56 6.98 25.62 −13.38 5.11 8.30 12.00

Mining land 100 0.27 2.74 17.22 −45.77 7.33 7.29 12.00
Bare land 100 14.20 48.66 200.58 −137.58 64.12 65.36 6.00

Wheat land 100 4.11 5.58 24.56 −17.13 5.77 7.06 9.00
Wood land 100 −4.75 36.38 85.34 −131.10 44.61 44.64 3.00
Grass land 74 4.21 7.54 25.16 −39.13 8.77 8.32 13.51
Whole area 1074 2.29 15.22 200.58 −137.58 27.38 27.45 9.31
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Table 8. Statistical measures of the difference between the calibrated GDEM2 and GNSS measurements
by using the first sample set for validation (S signifies simple linear regression and M multiple
linear regression).

Land-Use Type Sample
Points

ME (m) AME (m) Max (m) Min (m) STD (m) RMSE (m) FSR (%)

S M S M S M S M S M S M S M

Water & tide land 100 0.22 3.28 1.50 6.94 8.15 33.40 −16.02 −15.76 2.77 9.22 2.76 9.75 13.00 13.00
Urban land 100 0.26 0.29 6.70 9.42 24.89 29.60 −47.44 −44.47 10.89 13.50 10.84 13.44 12.00 12.00
Rural land 100 −0.74 −2.93 7.66 10.03 22.49 26.12 −46.94 −46.16 10.42 12.63 10.39 12.90 11.00 9.00

Garden land 100 −0.12 −0.12 18.21 16.86 50.67 45.79 −87.87 −72.77 24.54 22.86 24.42 22.74 6.00 3.00
Scenic land 100 −1.02 −0.05 19.22 18.25 59.78 66.58 −66.52 −57.68 25.25 23.06 25.14 22.95 7.00 11.00

Riceland 100 0.10 3.28 0.92 6.94 9.86 33.40 −8.50 −15.76 1.96 9.22 1.95 9.75 13.00 10.00
Mining land 100 0.17 −2.91 4.08 8.90 44.68 43.86 −110.37 −91.75 12.94 13.58 12.88 13.82 8.00 9.00

Bare land 100 2.05 1.58 47.67 42.59 192.90 190.75 −149.50 −133.85 62.67 56.84 62.39 56.58 4.00 4.00
Wheat land 100 −0.22 0.97 4.26 8.75 11.19 21.57 −24.94 −28.35 6.44 10.96 6.41 10.95 9.00 10.00
Wood land 100 −0.83 −0.65 39.22 34.87 194.66 186.76 −133.45 −114.04 53.81 49.17 53.55 48.93 5.00 8.00
Grass land 74 0.10 0.12 6.94 10.49 35.67 60.21 −43.11 −46.94 11.20 15.53 9.57 13.27 1.35 13.51
Whole area 1074 −0.01 0.17 14.39 16.01 194.66 190.75 −149.50 −133.85 28.18 26.75 28.16 26.73 8.29 9.22

The ME, AME, and FSR measures for the simple linear regression method, listed in Table 7,
show considerable improvement over those in Table 8 (Figure 6B), despite slight increases in STD
(from 27.38 to 28.18) and RMSE (from 27.45 to 28.16). This agrees well with what we observed in
Tables 2 and 5, although the STD and RMSE decreased. The simple linear regression method therefore
proves capable of improving GDEM2 accuracy. In the assessment of the multiple linear regression
method (Tables 7 and 8), all the statistical measures show improvement except for the AME, in inverse
validation, which only increased from 15.22 to 16.01 (5.2%). This suggests that multiple linear regression
better improves GDEM2 accuracy than simple linear regression, based on the assessment of improved
GDEM2 data and the assessment of the sampling effect.

Although various methods have been proposed to improve ASTER GDEM accuracy, many of
them—for example the regionalization based on the multi-source data, the denoising algorithm,
and the iterative fusion method [51–54]—were based on the freely obtained DEM data (for example
Shuttle Radar Topography Mission (SRTM) DEM), which contains intrinsic errors. The intrinsic
errors may be propagated to the calibrated DEM data if the method is not well designed. With
more data being included in the fusion process, there are more calculations and higher complexity
in improving DEM accuracy. In addition, such a complex process poses a challenge to non-geodesy
experts’ understanding of its principles, and thus limits its application in environmental research. Both
linear regression calibration methods presented in this study are, however, based on statistical analysis.
The simple linear regression method is easier to apply than the multiple linear regression method,
as it requires less data for modelling. In addition, a land-use classification scheme consisting of the
reclassified 11 land-use types presented in this study proves effective at characterizing both vegetation
coverage and buildings and can be produced from a cadastral database. Despite the systematic analysis
of the ASTER GDEM error sources to improve the accuracy, the simple linear regression calibration
method requires few steps for implementation [55]. It therefore provides a good reference for other
areas with land-use datasets to obtain DEM data with relatively high accuracy.

5. Conclusions

To improve the accuracy of ASTER GDEM2 used for land use-related geographical and
environmental research on the scale of cities or counties, this study used GNSS measurements to
calibrate the ASTER GDEM2 through simple and multiple linear regression analysis. Both calibration
methods can improve ASTER GDEM2. The simple linear regression method only considers the impact
of land-use on elevation error, while the multiple linear regression method takes both land-use and
topographical factors into account. Unlike the multiple linear regression calibration method, which
requires additional data input in modelling, the simple linear regression calibration method is simple
and easy to apply. It creates an opportunity to calibrate ASTER GDEM datasets for areas with detailed
land-use data and good field-based elevation measurements. In cases without such data, detailed
land-use information can be extracted from high-resolution satellite remote-sensing imagery.
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Although more sample points used for calibration can help further improve ASTER GDEM
accuracy, this also means a higher cost of acquiring field data. As such, to balance accuracy and cost,
users need to determine a suitable number of sample points. It is recommended that more than 57
sample points should be used in the calibration to obtain a statistically acceptable result [56], but
we recommend users take into account their available resources and the geographical size of their
study area.
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Appendix

Table A1. The description of the 11 land-use types in Lianyungang.

Land-Use Type Description

Water and tide land Land covered by water such as river, lake, reservoir, tide land and wet land.

Urban land Urban residential, commercial, industrial land.

Rural land Rural residential land.

Garden land Land used for planting fruit trees and tea plants.

Scenic land Land mainly used for tourism. Most of the scenic land in Lianyungang is
characterized by high elevations and an undulating surface.

Rice land Land used for planting the rice.

Mining land
Land used for mining all types of minerals such as coal, stone and salt. Mining
land in Lianyungang refers mainly to salterns in the south-eastern town of Xuwei
in Lianyun District.

Bare land Land with little or no vegetation. Most of the bare land in Lianyungang is
characterized by complex terrain.

Wheat land Land used for planting wheat.

Wood land Land used for growing trees, such as forests.

Grass land Land covered by weed or used for growing pasture. Most of the grass land in
Lianyungang is mainly covered with weed.
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